skip to main content


Search for: All records

Creators/Authors contains: "Ng, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Numerous structures conducive to magnetic reconnection are frequently observed in the turbulent regions at quasi-parallel shocks. In this work, we use a particle-in-cell simulation to study 3D magnetic reconnection in shock turbulence. We identify and characterize magnetic null points, and focus on reconnection along the separator between them. We identify a reconnection region with strong parallel current, a finite parallel potential, and counterrotating electron flows. Electrons are shown to be accelerated by the parallel electric field before being scattered at the null.

     
    more » « less
  2. Abstract

    We perform a 2.5-dimensional particle-in-cell simulation of a quasi-parallel shock, using parameters for the Earth’s bow shock, to examine electron acceleration and heating due to magnetic reconnection. The shock transition region evolves from the ion-coupled reconnection dominant stage to the electron-only reconnection dominant stage, as time elapses. The electron temperature enhances locally in each reconnection site, and ion-scale magnetic islands generated by ion-coupled reconnection show the most significant enhancement of the electron temperature. The electron energy spectrum shows a power law, with a power-law index around 6. We perform electron trajectory tracing to understand how they are energized. Some electrons interact with multiple electron-only reconnection sties, and Fermi acceleration occurs during multiple reflections. Electrons trapped in ion-scale magnetic islands can be accelerated in another mechanism. Islands move in the shock transition region, and electrons can obtain larger energy from the in-plane electric field than the electric potential in those islands. These newly found energization mechanisms in magnetic islands in the shock can accelerate electrons to energies larger than the achievable energies by the conventional energization due to the parallel electric field and shock drift acceleration. This study based on the selected particle analysis indicates that the maximum energy in the nonthermal electrons is achieved through acceleration in ion-scale islands, and electron-only reconnection accounts for no more than half of the maximum energy, as the lifetime of sub-ion-scale islands produced by electron-only reconnection is several times shorter than that of ion-scale islands.

     
    more » « less
  3. Abstract

    Interactions between solar wind ions and neutral hydrogen atoms in Earth's exosphere can lead to the emission of soft X‐rays. Upcoming missions such as SMILE and LEXI aim to use soft X‐ray imaging to study the global structure of the magnetosphere. Although the magnetosheath and dayside magnetopause can often be driven by kinetic physics, it has typically been omitted from fluid simulations used to predict X‐ray emissions. We study the possible results of soft X‐ray imaging using hybrid simulations under quasi‐radial interplanetary magnetic fields, where ion‐ion instabilities drive ultra‐low frequency foreshock waves, leading to turbulence in the magnetosheath, affecting the dynamics of the cusp and magnetopause. We simulate soft X‐ray emission to determine what may be seen by missions such as LEXI, and evaluate the possibility of identifying kinetic structures. While kinetic structures are visible in high‐cadence imaging, current instruments may not have the time resolution to discern kinetic signals.

     
    more » « less
  4. null (Ed.)
  5. Abstract

    An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Before fault-tolerant quantum computing, robust error-mitigation strategies were necessary to continue this growth. Here, we validate recently introduced error-mitigation strategies that exploit the expectation that the ideal output of a quantum algorithm would be a pure state. We consider the task of simulating electron systems in the seniority-zero subspace where all electrons are paired with their opposite spin. This affords a computational stepping stone to a fully correlated model. We compare the performance of error mitigations on the basis of doubling quantum resources in time or in space on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques such as postselection. We study how the gain from error mitigation scales with the system size and observe a polynomial suppression of error with increased resources. Extrapolation of our results indicates that substantial hardware improvements will be required for classically intractable variational chemistry simulations.

     
    more » « less
  6. null (Ed.)
  7. Abstract Indistinguishability of particles is a fundamental principle of quantum mechanics 1 . For all elementary and quasiparticles observed to date—including fermions, bosons and Abelian anyons—this principle guarantees that the braiding of identical particles leaves the system unchanged 2,3 . However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions 4–8 . Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals 9–22 , the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons 9,10 , we implement a generalized stabilizer code and unitary protocol 23 to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing. 
    more » « less
    Free, publicly-accessible full text available May 11, 2024
  8. Abstract

    Lower‐hybrid‐drift waves driving vortical flows have recently been discovered in the electron current layer during magnetic reconnection in the terrestrial magnetotail. Yet, spacecraft measurements cannot address how pervasive the waves are. We perform three‐dimensional particle‐in‐cell simulations of guide field reconnection to demonstrate that electron vortices driven by the lower‐hybrid‐drift instability (LHDI) are excited immediately downstream from the electron jet reversal in 3‐D channels of enhanced electron outflow. The resulting fluctuations generate a series of alternating vortices, producing magnetic field perturbations opposing and enhancing the local guide field and causing kinking of the enhanced electron outflow and patches of increased current. Our results demonstrate for the first time that LHDI exists in the electron current layer and enhanced outflow channels, providing a conceptual breakthrough on the LHDI in reconnection.

     
    more » « less